Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
Q DP problem:
The TRS P consists of the following rules:
ADX1(cons2(X, Y)) -> ADX1(Y)
ADX1(cons2(X, Y)) -> INCR1(cons2(X, adx1(Y)))
NATS -> ADX1(zeros)
NATS -> ZEROS
ZEROS -> ZEROS
INCR1(cons2(X, Y)) -> INCR1(Y)
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ADX1(cons2(X, Y)) -> ADX1(Y)
ADX1(cons2(X, Y)) -> INCR1(cons2(X, adx1(Y)))
NATS -> ADX1(zeros)
NATS -> ZEROS
ZEROS -> ZEROS
INCR1(cons2(X, Y)) -> INCR1(Y)
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
INCR1(cons2(X, Y)) -> INCR1(Y)
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
INCR1(cons2(X, Y)) -> INCR1(Y)
Used argument filtering: INCR1(x1) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ADX1(cons2(X, Y)) -> ADX1(Y)
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ADX1(cons2(X, Y)) -> ADX1(Y)
Used argument filtering: ADX1(x1) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ZEROS -> ZEROS
The TRS R consists of the following rules:
nats -> adx1(zeros)
zeros -> cons2(0, zeros)
incr1(cons2(X, Y)) -> cons2(s1(X), incr1(Y))
adx1(cons2(X, Y)) -> incr1(cons2(X, adx1(Y)))
hd1(cons2(X, Y)) -> X
tl1(cons2(X, Y)) -> Y
The set Q consists of the following terms:
nats
zeros
incr1(cons2(x0, x1))
adx1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.